SISTEMA DE BOMBA SOLAR CENTRÍFUGA MANUAL DE USUARIO

MODELO: 3SPC3.2/54-D36/550

ÍNDICE

•	Instrucciones de Operation Segura	3
1、	Principio de Funcionamiento	4
2、	Descripción de la Bomba Solar 3SPC3.2/54-D36/550	5
	2.1 Descripción del modelo	5
	2.2 Material de las partes	5
	2.3 Especificación de la bomba	5
	2.4 Rendimiento de la bomba	5
3、	Información General del Controlador JL-197K1500-36	6
	3.1 Caracteristicas	6
	3.2 Parámetros técnicos del controlador JL-197K1500-36	7
	3.3 Modo de operación del controlador JL-197K1500-36	8
	3.4 Modo de conexión del controlador JL-197K1500-36	9
	3.4.1 Diagrama de conexión general	9
	3.4.2 Funcionamiento de los interruptores de nivel del tanque	9
	3.4.3 Modo de conexión con el interruptor de presión	10
	3.4.4 Funcionamiento del interruptor de nivel de pozo	10
4、	Conexión y Configuración del Panel Solar	11
	4.1 Configurado por 18Vmp (Voc22V) Panel Solar	11
	4.2 Configurado por 36Vmp (Voc44V) Panel Solar	11
5、	Instalación Mecánica y Eléctrica del Controlador	12
	5.1 Diagrama de dimensiones del esquema y la instalación	12
	5.2 Instalación mecánica	12
	5.2.1 Protección contra sobrecalentamiento	12
	5 2 2 Selección de ubicación	12

INSTRUCCIONES DE OPERATION SEGURA

■ ANTES DE LA INSTALACIÓN

- O No instale ni opere el controlador dañado o con partes faltantes. Si no, puede dañar el equipo o la vida.
- Use la configuración correcta del panel solar de acuerdo con nuestra guía técnica estrictamente.
 De lo contrario, puede influir en el rendimiento de la bomba, incluso dañar el sistema.

■ INSTALACIÓN

↑ CAUTION

- O Instale el controlador en material no inflamable como metal. De lo contrario, puede provocar un incendio.
- © Si el controlador está montado en un gabinete de protección, se necesita ventilación para garantizar que la temperatura ambiente sea inferior a 40°C. Si no, el controlador puede dañarse por la alta temperatura.
- © Conecte los cables UVW de la bomba a los terminales UVW del controlador correctamente.
- O Conecte cada terminal correctamente, no demasiado apretado o demasiado flojo.
- © Cada junta de cable de extensión debe ser hermética y bien impermeable. De lo contrario, provocará un cortocircuito y una falla en el inicio del sistema.
- O No toque la placa de control con la mano. Si no, la ESD dañará algunos componentes internos.
- Mantenga el sensor de nivel bien vertical y asegúrese de que el flotador se mueva libremente. Si no, el sistema recibirá una señal incorrecta y responderá incorrectamente.

- O Solo personal calificado podría operar el sistema. Si no, puede provocar descarga eléctrica o dañar el sistema.
- © El controlador debe estar aislado de la fuente de alimentación mediante el interruptor de circuito. Si no, puede provocar un incendio.
- No toque los terminales de entrada de alimentación del controlador y de la bomba en estado energizado.
 De lo contrario, puede provocar una descarga eléctrica.

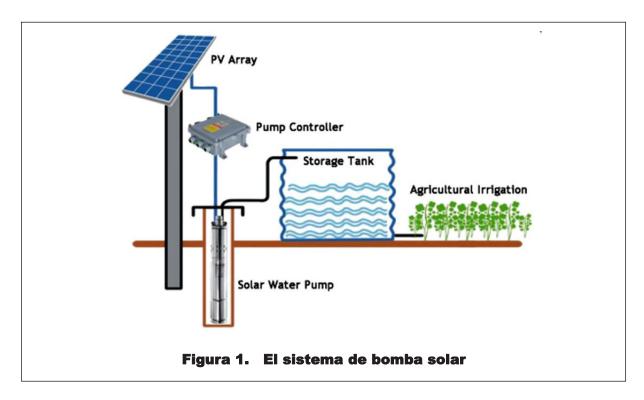
■ OPERACIÓN

- O No abra ni quite la cubierta frontal del controlador durante el funcionamiento.
- Para probar la bomba, el tiempo máximo de funcionamiento en seco no puede superar los 15s.
- Si la bomba está invertido, cambie cualquiera de los dos cables de los UVW de la bomba.

■ MANTENIMIENTO E INSPECCIÓN

- Solo personal profesional calificado o autorizado puede mantener, reemplazar e inspeccionar el sistema. De lo contrario, puede causar daños o lesiones personales.
- © Espere al menos 10 minutos después de la falla de energía, o asegúrese de que no haya voltaje residual antes de llevar a cabo el mantenimiento y la inspección. Si no, puede causar daños o lesiones personales.

■ SERVICIO DE POSTVENTA


Si no sigue las instrucciones anteriores, lo que daña la bomba y el controlador, no podrá disfrutar del servicio de garantía.

1. PRINCIPIO DE FUNCIONAMIENTO

El sistema de bombeo solar sirve para proporcionar agua en aplicaciones remotas donde la red eléctrica no es confiable, no está disponible o es muy costosa. El controlador de bomba solar BLDC utiliza la potencia de CC del conjunto fotovoltaico directamente para impulsar las bombas CC sin escobillas. En días soleados, el sistema de bombeo puede bombear continuamente.

- 1. No necesita baterías u otros dispositivos de almacenamiento de energía. Se recomienda bombear agua a un depósito para su almacenamiento.
- 2. Se necesitan muchos menos paneles en comparación con el sistema de bomba de CA solar.

El interruptor de flotador se puede instalar en la fuente de agua y en la torre de agua para controlar el funcionamiento de la bomba. La Figura 1 muestra un diagrama típico del sistema de bombeo solar, que incluye piezas y componentes principales.

Consiste en

- Paneles solares
- Controlador de bomba solar
- Bomba solar
- Interruptores de nivel de fuente de agua
- Interruptores de nivel de tanque

2. DESCRIPCIÓN DE 3SPC3.2/54-D36/550

2.1 Descripción del Modelo

<u>3</u>	<u>s</u>	<u>P</u>	<u>C</u>	<u>3.2</u>	<u>/54</u>	- <u>D36</u>	/ <u>550</u>
1	2	3	4	(5)	6	7	8

1)	Diámetro exterior (pulgadas)	2	Bomba sumergible
3	Impulsor de plástico	4	Bomba centrífuga
(5)	Flujo máximo (m³/h)	6	Cabeza máxima (m)
7	Voltaje nominal (V)	8	Potencia de la bomba (W)

2.2 Material de las Partes

Partes	Descripción de Material				
Motor	Full Oil Permanent Magnet Brushless DC Motor (Without Hall)				
Controlador	32bit MCU / FOC / Sine Wave Current / MPPT				
Controlador Shell	Die-cast Aluminum(IP67)				
Salida de la bomba	Latón				
Cuerpo de la bomba	Acero inoxidable 304				
Cuerpo del motor	Acero inoxidable 304				
Oso	NSK				
Impulsor	Plástico				
Tornillo	Acero inoxidable 316				
Cable	3 Cores / 2 Meters / 1.5mm ²				

2.3 Especificación de la Bomba

Item	Valores paramétricos
Voltaje nominal	36 VDC
Potencia nominal	550 W
Flujo máximo	3.2 m ³ /h
Cabeza máxima	54 m
Salida de la bomba	1 inch
Diámetro exterior	3 inch

2.4 Rendimiento de la Bomba

Model	Flow (m³/h)	0	0.9	1.2	1.5	1.8	2.1	2.4	2.7	3.0	3.3	
3SPC3.2/54-D36/550	Head (m)	66	60	55	50	45	40	30	20	10	0	

3. Información General del Controlador JL-197K1500-36

3.1 Caracteristicas

The JL-197K1500-36 solar pump controller is designed with the high standard of reliability expected of products. The controller attempts to drive the pump and motor to deliver water even under adverse conditions, reducing output as necessary to protect the system components from damage, and only shutting down in extreme cases. Full operation is restored automatically whenever abnormal conditions subside.

Inspection

Before you begin, inspect the JL-197K1500-36 solar pump controller unit. Verify that the part number is correct and no damage has occurred during transit.

NOTE: JL-197K1500-36 solar pump controller is the component of solar pumping system which has other two components, PV array and Brushless DC pump.

Protection Features

Electronic monitoring gives the controller the capability to monitor the system and automatically shut down in the event of:

- Dry well conditions with low level switch
- Bound pump with auto-reversing torque.
- · High Voltage Surge
- Low Input Voltage
- · Open motor circuit
- Short circuit
- Over heat

NOTE: This controller provides motor overload protection by preventing motor current from exceeding rating current and by limiting the duty cycle in the event of low water level. This controller does not provide over temperature sensing of the motor.

System Diagnostics

The JL-197K1500-36 solar pump controller continuously monitors system performance and detects a variety of abnormal conditions. In many cases, the controller will compensate as needed to maintain continuous system operation; however, if there is high risk of equipment damage, the controller will protect the system from the fault condition. If possible, the controller will try to restart itself when the fault condition subsides.

Motor Soft-Start

Normally, when there is a demand for water and power is available, the JL-197K1500-36 solar pump controller will be operating. Whenever the JL-197K1500-36 solar pump controller detects a need for water, the controller always "ramps up" the motor speed while gradually increasing motor voltage, resulting in a cooler motor and lower start-up current compared to conventional water systems. This will not harm the motor due to the controller's soft-start feature.

Over Temperature Foldback

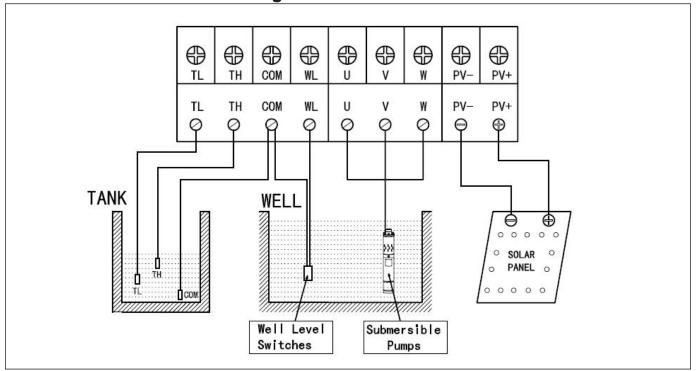
The JL-197K1500-36 solar pump controller is designed for full power operation from a solar array in ambient temperatures up to 45° C. In excess of 45° C temperature conditions, the controller will reduce output power in an attempt to avoid shutdown. Full pump output is restored when the controller temperature cools to a safe level.

Level Control Switch

The JL-197K1500-36 solar pump controller can access two water level switches (well level sensor and tank level sensor) to detect remotely and control the pump automatically. Level switch for JL-197K1500-36 solar pump controller is optional, not mandatory.

3.2 Parámetros Técnicos del Controlador JL-197K1500-36

Item		Valores paramétricos					
	Voltaje nominal	24 VDC					
Mallada	Voltaje abierto máximo	80 VDC 20 VDC					
Voltaje	Under Protection Voltaje						
	Over Protection Voltaje	68 VDC	68 VDC				
	Corriente nominal	12 A	12 A				
Corriente eléctrica	Over Protection Corriente	15 A					
electrica	Peak Protection Corriente	18 A					
MCU y Modo o	le Controlador	32bit MCU / FOC / Sine Wave Current / MPPT					
Cáscara		Die-cast Aluminum (IP67)					
Dimensión		197mm*190mm*98mm					
Peso neto		2.1kg Disipación de calor natural -20 °C - +50 °C					
Modo de enfria	amiento						
Temperatura d	e funcionamiento						
Condiciones de	e almacenaje	-20°C - +80°C/5∼85%RH (Sin condensación)					
Modo operativo	0	S1 (Trabajo continuo)					
	VMP de panel solar	17~18V	35~36V				
Panel solar adaptable	VOC de panel solar	21~22V	43~44V				
auapianie	*Nota: Encuentre el plano de conexión del panel solar en la página 11.						


3.3 Modo de Operación del Controlador JL-197K1500-36

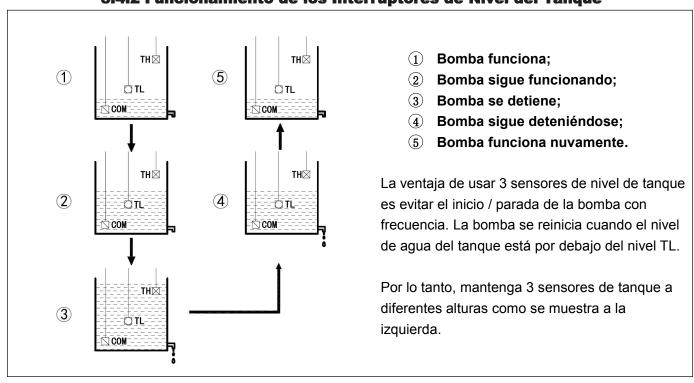
Descripción de la función de botones						
+	Presione para agregar la velocidad					
-	Presione para reducir la velocidad					
RUN/STOP	Presione para controlar comenzar y detener					

Descripción de la luz indicadora							
5	Ajustar la velocidad de la bomba. 5 velocidades en total.						
3 -	1 -	Velocidad más baja					
1 -	5 📟	Velocidad más alta					
	Power:	CC potencia está disponible.					
	Running:	La bomba está funcionando.					
	MPPT:	El sistema se ejecuta en modo MPPT.					
Power Running MPPT Well Tank	Well:	No hay agua en el pozo					
	Tank:	El tanque de agua esta lleno.					
	MPPT:	Rastreo del punto de máxima potencia					
	Método de ajuste de MPPT						
MPPT	Con 5 ■ modo, presione + otra vez, MPPT indicador se iluminará.						
WIFT	Haga que el sistema funcione en modo MPPT.						

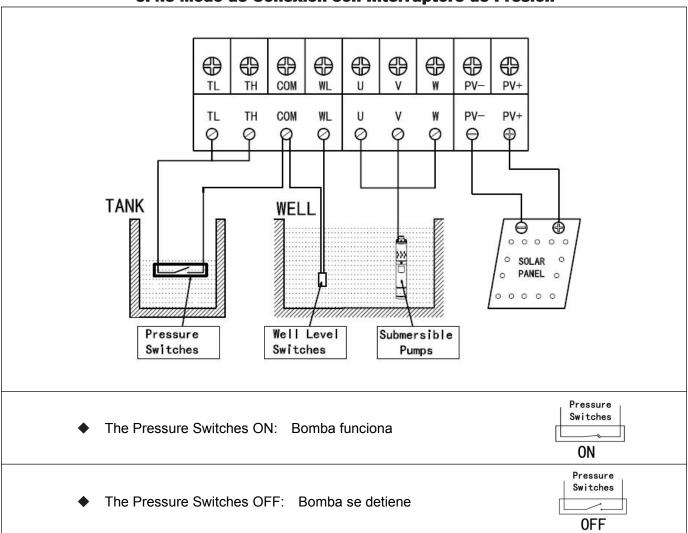
3.4 Modo de Conexión del Controlador JL-197K1500-36 3.4.1 Diagrama de Conexión General

■ TL & TH cortocircuito: El tanque está lleno, la bomba se detiene

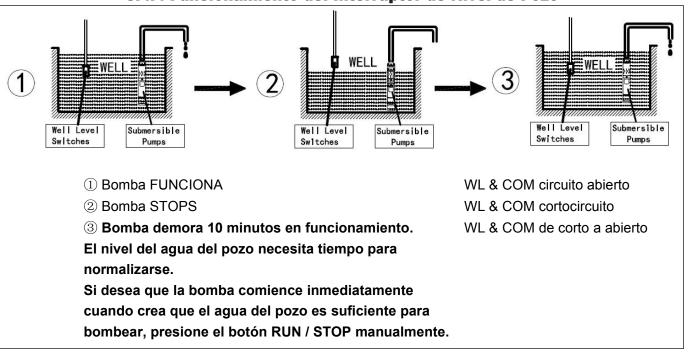
TL & TH circuito abierto:
 La bomba funciona


WL & COM cortocircuito:
 No hay agua en el pozo, la bomba se detiene

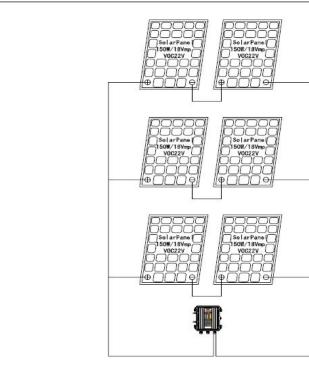
WL & COM circuito abierto: La bomba funciona


• U V W Conecte a los cables de la bomba UVW correspondientemente

PV+ PV- Conecte a panel solar correspondientemente


3.4.2 Funcionamiento de los Interruptores de Nivel del Tanque

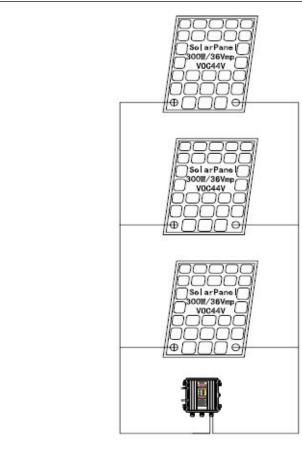
3.4.3 Modo de Conexión con Interruptore de Presión



3.4.4 Funcionamiento del Interruptor de Nivel de Pozo

4. CONEXIÓN Y CONFIGURACIÓN DEL PANEL SOLAR

4.1 Configurado por 18Vmp (Voc22V) Panel Solar


INPUT:

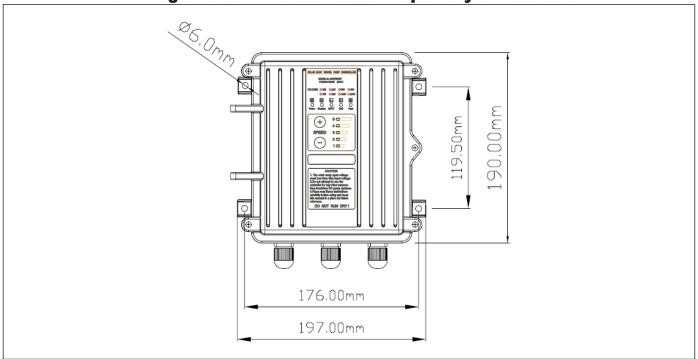
Solar Panel VMP=18Vdc Solar Panel VOC=22Vdc Solar Panel Power=150W Solar Panel Quantity=6PCS

OUTPUT:

VMP=36Vdc VOC=44Vdc Power=900W(MAX)

4.2 Configurado por 36Vmp (Voc44V) Panel Solar

INPUT:


Solar Panel VMP=36Vdc Solar Panel VOC=44Vdc Solar Panel Power=300W Solar Panel Quantity=3PCS

OUTPUT:

VMP=36Vdc VOC=44Vdc Power=900W(MAX)

5. INSTALACIÓN MECÁNICA Y ELÉCTRICA DEL CONTROLADOR

5.1 Diagrama de Dimensiones del Esquema y la Instalación

5.2 Instalación Mecánica

5.2.1 Protección Contra Sobrecalentamiento

Si está en el exterior, el controlador debe instalarse en un lugar bien ventilado y evitar la luz solar y la lluvia. La mejor ubicación de instalación se encuentra debajo de la matriz solar, lo que puede evitar que el equipo se sobrecaliente y la degradación del rendimiento. La temperatura alta puede hacer que el controlador se detenga para protegerse. Sugeriremos usar una caja eléctrica con interruptor, como Figura 5.

5.2.2 Selección de Ubicación

El controlador de la bomba solar es diseñado para funcionar a temperaturas ambiente máximas de hasta 60°C. Para evitar el sobrecalentamiento, se recomienda instalar el controlador en una posición sombreada. El controlador debe instalarse en una caja de control que tenga una carcasa hermética para evitar la luz solar, lluvia, polvo, humedad, animales, plantas, etc. La caja necesita una placa de prensaestopas inferior para instalar cable de alambre o conducto.

Para decidir el tamaño de la caja de control, consulte la siguiente Figura 4.

Figura 4. Ubicación de la caja de control

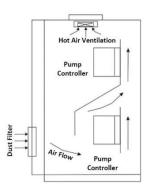


Figura 5. Arreglo de ventilación y distancia requerida